Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes
نویسندگان
چکیده
منابع مشابه
Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes
— We study her e the convergence of Finite Volume schemes of monotone type for gênerai multidimensional conservation laws. By generalizing a previous result of Kuznetsov for Finite Différence schemes, we obtain under gênerai assumptions error bounds in h when the initial condition lies in BV (U) ; convergence follows for initial conditions in L (U) C\ L (U), Résumé. — On étudie ici la convergen...
متن کاملFinite volume schemes for nonhomogeneous scalar conservation laws: error estimate
In this paper, we study nite volume schemes for the nonhomogeneous scalar conservation law u t +divF(x; t; u) = q(x; t; u) with initial condition u(x; 0) = u 0 (x). The source term may be either stii or nonstii. In both cases, we prove error estimates between the approximate solution given by a nite volume scheme (the scheme is totally explicit in the nonstii case, semi-implicit in the stii cas...
متن کاملConvergence of monotone finite volume schemes for hyperbolic scalar conservation laws with multiplicative noise
We study here the discretization by monotone finite volume schemes of multi-dimensional nonlinear scalar conservation laws forced by a multiplicative noise with a time and space dependent flux-function and a given initial data in L(R). After establishing the well-posedness theory for solutions of such kind of stochastic problems, we prove under a stability condition on the time step the converg...
متن کاملFinite volume relaxation schemes for multidimensional conservation laws
We consider finite volume relaxation schemes for multidimensional scalar conservation laws. These schemes are constructed by appropriate discretization of a relaxation system and it is shown to converge to the entropy solution of the conservation law with a rate of h1/4 in L∞([0, T ], Lloc(R d)) .
متن کاملConvergence and Error Estimates of Relaxation Schemes for Multidimensional Conservation Laws
M. A. Katsoulakis, G. Kossioris and Ch. Makridakis Abstract. We study discrete and semidiscrete relaxation schemes for multidimensional scalar conservation laws. We show convergence of the relaxation schemes to the entropy solution of the conservation law and derive error estimates that exhibit the precise interaction between the relaxation time and the space/time discretization parameters of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis
سال: 1994
ISSN: 0764-583X,1290-3841
DOI: 10.1051/m2an/1994280302671